The risk of Product Environmental Footprints incorrectly recommending energy recovery

Tomas Ekvall^{1,2}, Marie Gottfridsson³, Johan Nilsson³, Maja Nellström³, Maria Rydberg^{1,4}, Tomas Rydberg³

¹ Chalmers University of Technology, ² Tomas Ekvall Research, Review & Assessment, ³ IVL Swedish Environmental Research Institute,

Recycling Recycling Recycling Fiv Virgin material production The net environmental benefit is for... recycling: E*_v+E*_D-E_R incineration: E*_E+E*_D-E_ER Recycling is better when E*_v-E_R > E*_E-E_R Disposal Recycling Disposal Energy recovery Virgin material production Production Manufacturing Disposal Disposal Disposal Disposal Disposal

The problem

PEF assigns less than half of the net benefit of polymer recycling to products recycled after use (A=0.5; Q_s/Q_p =0.9). For paper products, the share is higher (A=0.2), but for textiles it is even lower (A=0.8). PEF assigns 100% of the net benefit of incineration, to products incinerated after use.

Potential solutions

1. Include the alternative treatment of waste displaced at the incinerator; account for the uncertainty with scenarios (E_{Sc}) .

2. Assign part of the environmental benefit of incineration (B) to the use of energy from waste, based on the revenues of incineration.

Conclusions

- The solutions both make the comparison between incineration and recycling more balanced. They are applicable in LCAs beyond PEF.
- B = 0.6 makes the comparison between incineration and recycling accurate for polymers; however, Factor A varies with materials while B varies over time and space.
- Short-term impacts of incineration are modelled with displaced waste, where the alternative treatment is likely to be landfill disposal.
- Long-term impacts of incineration can be modelled with a combination of Factor B and displaced waste, where the alternative treatment can be a wide range of technologies.

Further reading:

- Ekvall T, Gottfridsson M, Nilsson J, Nellström M, Rydberg M,
 Rydberg T. (2021) Incentives for recycling and incineration in LCA:
 Polymers in Product Environmental Footprints. Report 2021:02.
 Swedish Life Cycle Center, Gothenburg, Sweden.
- Ekvall T, Gottfridsson M, Nilsson J, Nellström M, Rydberg M, Rydberg T. (2021) Modelling incineration for more accurate comparisons to recycling in PEF and LCA. Manuscript submitted to Waste Management.

⁴ Swedish Life Cycle Center