Life cycle assessment of the different energies: methodology for contributing to a justified multicriteria energy transition - The French case

Didier Hartmann*, Maxime Teixeira

French Alternative Energies and Atomic Energy Commission, CEA Marcoule, ISEC/DMRC/STDC, University of Montpellier, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France

(*): corresponding author: didier.hartmann@cea.fr

- Objectives:
 - Classify the different energies in terms of environmental impact, production cost and social acceptance and propose a rule for a multicriteria assessment depending on stakeholders' viewpoint
 - Give a tool for policy makers about the energy transition; application to the French case with a lot of energy choices. ≻

1. COMPARISON OF ENERGIES

Fig 1 shows the relative contribution of different energies to an impact category, each producing 1 kWh of electricity and normalized to 100%. The IMPACT2002+ method was chosen as an example.

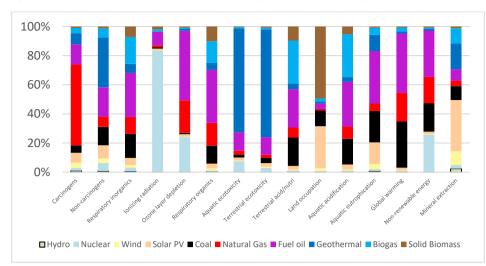


Fig. 1: Comparison of impact for 1 kWh produced with different technologies (IMPACT 2002+ Midpoints)

2. SCENARIO SELECTION

Scenario	Year	Nuclear	Renewables	Fossil	Storage	Intermittent renewables				
	2018	73.0%	19.7%	7.3%	1.0%	7.1%				
^	2035	50.0%	50.0%	0.0%	0.9%	37.4%				
A	2050	43.0%	57.0%	0.0%	3.2%	45.5%				
D	2035	50.0%	50.0%	0.0%	2.0%	37.4%				
В	2050	49.6%	50.4%	0.0%	2.0%	37.1%				
0	2035	49.8%	44.2%	6.0%	1.7%	30.6%				
C	2050	0.0%	94.3%	5.7%	3.4%	79.5%				
5	2035	59.0%	35.7%	5.4%	0.9%	23.5%				
D	2050	60.5%	39.5%	0.0%	0.7%	28.8%				
Table 2: Sha	Fable 2: Share of the different energies in the electric production mix for each scenario									

Fig. 3: The 3 pillars of sustainable development

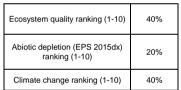


Table 4: Weighting factors used to d ine the "Environmental score

3.2. Economic score

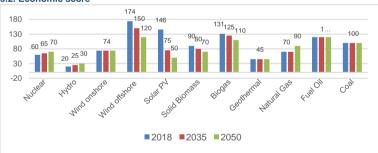


Fig. 4: Projections of overall production cost of energies (€/MWh)

Energy	Human Health	Ecosystem Quality	Climate Change
Hydro	1	1	1
Wind	2	2	3
Nuclear	3	4	2
Solar PV	4	6	6
Solid Biomass	5	7	4
Geothermal	6	10	5
Natural Gas	7	3	8
Coal	8	8	9
Biogas	9	5	7
Fuel oil	10	9	10

Table 1: Ranking of the energies using IMPACT 2002+ endpoints for 1 kWh of electricity produced

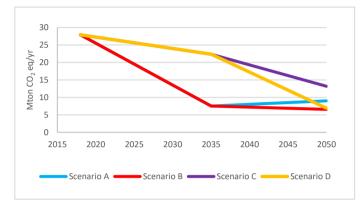


Fig. 2: Global warming damage for each transition scenario (IMPACT 2002+)

Human health ranking (1-10)	50%
Number of direct jobs / kWh (1-10)	30%
Perceived risk-consequence in the case of major accident (1-5)	20%

Table 3: Weighting factors used to determine the "Social score"

Criterion	Economic	Environmental	Social
Industrial and investor approach	70%	20%	10%
Authorities approach	30%	40%	30%
Population approach	10%	50%	40%

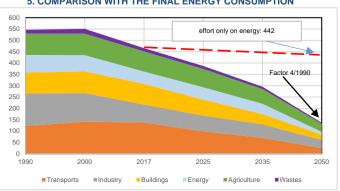
Table 5: Choice of weighting criteria for decision support

3.3. Overall scores of the energies (the lower the better)

Viewpoint	Year	Solid Biomass	Wind	Geothermal	Solar PV	Hydro	Biogas	Nuclear	Natural Gas	Coal	Fuel oil
Investors	2018	5.29	4.48	3.50	9.17	1.38	8.40	3.34	4.23	7.12	7.96
	2035	5.29	5.88	3.50	5.67	1.38	9.10	3.34	4.23	7.82	8.66
	2050	3.89	6.58	3.50	4.27	1.38	8.40	4.04	5.63	7.12	9.36
Authorities	2018	4.27	3.79	5.23	7.78	2.14	7.41	3.89	4.77	7.28	8.08
	2035	4.27	4.39	5.23	6.28	2.14	7.71	3.89	4.77	7.58	8.38
	2050	3.67	4.69	5.23	5.68	2.14	7.41	4.19	5.37	7.28	8.68
Population	2018	3.77	3.44	6.09	7.09	2.52	6.91	4.17	5.04	7.37	8.14
	2035	3.77	3.64	6.09	6.59	2.52	7.01	4.17	5.04	7.47	8.24
	2050	3.57	3.74	6.09	6.39	2.52	6.91	4.27	5.24	7.37	8.34

Table 6: Multicriterion scores of electricity sources depending on 3 different approaches (ReCiPe)

4. MULTICRITERIA SCENARIO CLASSIFICATION WITH EXTENDED SCORES


We decided to take into account the differences of magnitude in scores for the energies, normalising them through a ratio with respect to the best one. This allows a better separation of the energies compared to giving a uniform score from 1 to 10.

	Score/ Ranking	Solid Biomass	Wind	Geother- mal	PV	Hydro	Bio- gas	Nuclear	Natural Gas	Coal	Fuel Oil
Social	Score	2.50	2.94	5.68	5.96	5.96	10.5	5.75	21.1	35.9	56.5
	Ranking	1	2	3	5	6	7	4	8	9	10
Environ- mental	Score	17.4	4.11	7.45	21.6	1	26.3	3.12	38.1	75.4	91.7
mentai	Ranking	5	3	4	6	1	7	2	8	9	10
Feene mie	2018 score	4.50	3.70	2.25	7.29	1	6.55	2.99	3.50	5.00	6.00
Econo-mic	2035 score	3.20	3.72	1.80	3.00	1	5.00	2.60	2.80	4.00	4.80
	2050 score	2.33	3.62	1.50	1.67	1	3.67	2.33	3.00	3.33	4.00

Viewpoin t	Investors		Authorities		Рор	ulation	Mean value		Final ranking	
Scenario	2035	2050	2035	2050	2035	2050	2035	2050	2035	2050
А	3.46	3.42	4.40	4.52	4.85	5.07	4.24	4.34	1	3
В	3.46	3.29	4.40	4.37	4.85	4.90	4.24	4.19	1	1
С	3.88	4.52	5.40	6.49	6.15	7.48	5.14	6.16	4	4
D	3.76	3.25	5.22	4.44	5.94	5.04	4.97	4.24	3	2

Table 8: Multicriteria scores for the scenarios and rankings

Table 7: Detailed scores for electricity sources with extended scores methodology (ReCiPe method)

5. COMPARISON WITH THE FINAL ENERGY CONSUMPTION

6. CONCLUSIONS AND POLICY IMPLICATIONS Main results

- Start from LCA results of energies: 15 impact categories and endpoint approach to limit the number of parameters \rightarrow comparison and ranking of the different energies used for the production of electricity
- ٠ Multicriteria assessment including economic and social indicators (for economic, dynamic approach of the overall production cost)
- Different stakeholders' viewpoints ٠
- Final result: multicriteria ranking of energies ٠
- ٠ Application to the energy transition with 4 different scenarios
- ٠ A worksheet has been set up to allow a wide choice of tuneable parameters, which is important to match different needs.

Prospects

- ٠ Further parameters to be developed:
 - For social issues, other relevant parameters could be added
 - For the environmental part, the predictable technologies and their inventories should be assessed with associated uncertainties for the future
- Scores to be evaluated by a broader panel of citizens
- This study can be broadened to other countries, with possibly very different energy mixes.

Fig 5: Past and predicted greenhouse gas emissions per sector in France (Mton CO2 eq/yr)