Imperial CollegeProspective life cycleLondonassessment of the Europeancement industry

Maria Georgiades¹, Izhar Hussain Shah², Rupert J. Myers³ Department of Civil & Environmental Engineering, Imperial College London, Sheffield S1 3JD, United Kingdom. Email: ¹maria.georgiades19@imperial.ac.uk; ² izhar.s@imperial.ac.uk; ³ r.myers@imperial.ac.uk.

Abstract

Today, cement production accounts for 5-8% of global anthropogenic CO₂ emissions. This study investigates the potential reduction in CO₂ emissions by implementing measures such as supplementary cementitious materials (SCMs), alternative fuels, kiln efficiency, and background system changes up to 2050 using prospective life cycle assessment (LCA).

Methodology (LCA Framework)

Goal and Scope

Cradle-to-gate LCA (raw material acquisition,

Results

transportation, manufacturing stage)
Functional unit: 1 kg of cement
Cut-off allocation

Life Cycle Inventory (LCI)

Software: Activity Browser

 Data: literature, Getting the numbers right (GNR) and ecoinvent v3.6 database

 \odot Foreground scenarios:

- SCMs: fly ash, bagasse ash, rice husk ash, granulated blast furnace slag (20% addition in 2020 to 50% addition in 2050)
- Alternative fuel mix: 45% thermal demand in 2020 and 90% thermal demand in 2050
- Kiln Efficiency: 3.823 (GJ/ t cement clinker) in 2020 to 3.02 (GJ/ t cement clinker) in 2050)
- Background scenarios : SSP2 Baseline scenario and SSP2 RCP 2.6 scenario

Life Cycle Impact Assessment IPCC 2013, Global Warming Potential (GWP)

2050 (Base) 2050 (RCP 2.6) 2020 (Base) 2020 (RCP 2.6)

Figure 1: Environmental impact of prospective cement production with SCMs

Current CO2 emissions of cement production

-IEA cement production emission reduction target for 2050

Figure 2: Environmental impact of current cement production, IEA target for 2050 and prospective cement production.

Conclusion

- SCM addition has the greatest potential (46%-48%) relative to other measures (alternative fuels: 23%-32%, kiln efficiency: 11%-14%) studied.
- The IEA target (28% emission reduction) can be met with introducing these 3 decarbonisation measures which, can reduce up to 50%-53% of the associated CO₂ emissions.
 Background scenarios (SSP2
- Baseline, SSP2 RCP2.6) did not change the results significantly.

Acknowledgments

"The research leading to these results has been performed within the ReActiv project and received funding from the European Community's Horizon 2020 Programme (H2020/2014-2020) under grant agreement n° 958208"

References

- Oliver, Jos & Janssens-Maenhout, G. & Peters, Jeroen. (2012). Trends in global CO2 emissions; 2012 Report.
- ISO 140040 (July 2006). Environmental management Life cycle assessment – Requirements and guidelines. Standard. Geneva, CH: International Organisation for Standardisation.
- IEA (2018), *Technology Roadmap Low-Carbon Transition in the Cement Industry*, IEA, Paris <u>https://www.iea.org/reports/technology-roadmap-low-carbon-transition-in-the-cement-industry</u>
- Cembureau (2020) Cementing the European Green Deal Reaching climate neutrality along the cement and concrete value chain by 2050.
 Brussel, Belgium. Available at:

https://cembureau.eu/media/1948/cembureau-2050-roadmap_finalversion_web.pdf [accessed on 13 July 2020].

Maria Georgiades –PhD student at Imperial College London.