AN EXTENDED MATURITY MODEL TO INTEGRATE DIGITIZATION AND SUSTAINABILITY-RELATED MEASURES IN SMALL AND MEDIUM-SIZED MANUFACTURING ENTERPRISES

Marian Süße¹, Marc Münnich¹, Maximilian Stange¹, Lukas Roth¹, Steffen Ihlenfeldt^{1,2}

1 Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz, Germany 2 Institute of Mechatronic Engineering, Technische Universität Dresden, Dresden, Germany

Background

- In industrial manufacturing digitization is current necessity to stay competitive but at the same time industry is a major source of greenhouse gas emissions [1].
- Manufacturing industry, especially in Germany with a predominant share of SMEs, requires support and guidance in order to cope with multidimensional requirements.

Questions

- How may manufacturing companies receive an easily generated overview on their current level and aspired status regarding digitization and sustainability?
- How can existing maturity models be combined and adapted in order to build a modular and flexible assessment tool?

Previous Work

- The base is provided by the "Industry 4.0 Readiness Model" which was developed by three consulting firms an online self assessment tool [2].
- A second and more detailed model has been published as an Industry 4.0 guideline by the German association for machining [3] was been extended and applied for digitization maturity assessment by Langer et. al. [4].
- Finnerty et al. [5] extensively reviewed energy management maturity models. They suggest that research and implementation are still in an early stage.
- Pigosso et al. [6] propose an eco-design maturity model which comprises management strategies for manufacturing companies. Several aspects are specified for further investigation such as the inclusion of organizational factors.

Preparation Analysis Creativity Initialization Transfer

	Dimen- sion	Cate- gory	Area	
	Technology	Production	Data processing	
			Machine to Machine communication	
		Product	Integration of sensors and actors	
			Business models	
			Product-related IT Services	
	ion		Digitization strategy	
	Organization		Investment budget for digitization	
			Knowledge in digitization	
V	Personnel		On-the-job training	V
	Perso			

	Area	Assessment [0-4]		
		0	4	
	Strategic Implementation of Sustainability	Qualitative and nominal tracking	Extensive company mission statement	
	Supplier Management	Only monetary KPIs	Shared sustainability KPIs	
	Sustainability targets of customers	No specific requirements	Sustainability integrated into procurement systems	
	Sustainability Reporting	No sustainability reports	Integrated reporting	
	Certification	No certificates	Established certificates (e.g. science-based targets)	
	Employee Motivation	Reactive behaviour	Own initaitive	
	Corporate Culture	No relation to sustainibility, no incnetives	Target-oriented incentives, sustainability attraction programmes	

Workshop Structure

Maturity Model Base

Maturity Model Extension

References

[1] Gutowski, T. G., Allwood, J. M., Herrmann, C., & Sahni, S. (2013). A global assessment of manufacturing: Economic development, energy use, carbon emissions, and the potential for energy efficiency and materials recycling. Annual Review of Environment and Resources, 38 (1), 81–106.

[2] Goericke D, Lichtblau K, Stich V. Industry 4.0 Readiness Online Self-Check for Businesses. [Online]. Available: https://www.industrie40-readiness.de/?lang=en. Accessed: June 05 2021.

[3] Anderl R, Fleischer J. Leitfaden Industrie 4.0. [Online]. Available: https://industrie40.vdma.org/viewer//v2article/render/15540546. Accessed: June 05 2021.

[4] Langer T, Singer A, Wenzel K, Bolev D. Modulbaukasten Digitalisierung – individuelle Lösungen für eine smarte Produktion. In: Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) 112. Nr. 12; 2017, p. 902-906.

[5] Finnerty N, Sterling R, Coakley D, Keane MM. An energy management maturity model for multi-site industrial organisations with a global presence. In: Journal of Cleaner Production 167; 2017. p. 1232–1250.

[6] Pigosso D.C.A., Rozenfeld H. (2012) Ecodesign Maturity Model: the Ecodesign Practices. In: Matsumoto M., Umeda Y., Masui K., Fukushige S. (eds) Design for Innovative Value Towards a Sustainable Society. Springer, Dordrecht, pp. 424-429.

The authors gratefully acknowledge the financial support of the Kopernikus-project "SynErgie" by the Federal Ministry of Education and Research (BMBF) and the project supervision by the project management organization Projektträger Jülich (PtJ).

