ARE THERMODYNAMIC BASED INDICATORS THE SOLUTION FOR ASSESSING CIRCULARITY OF NEW BUILDINGS?

Diana E G Bizarro^{1a}, Mara Hauck¹

1 TNO, Utrecht, the Netherlands; a: corresponding author email: diana.godoibizarro@tno.nl

Problem setting

- To reach climate and circularity targets, infrastructure design tools have to take sustainability into account from the start and should facilitate the incorporation of secondary materials.
- Circularity indicators, like the material circularity indicator (MCI) are easy to calculate, but do not take into account energy demand or impacts. Thermodynamic indicators, like entropy or exergy comprise energy and materials, but are not easy to incorporate in an LCA analysis.

Hypothesis: Cumulative Exergy Demand (CExD) [high] = Impacts [high] = Circularity [low]

Approach

1. Correlation CExD and LCA impacts?

For 6 construction materials: cement (portland and furnace slag), gravel, sand, water, steel.

2. Case study

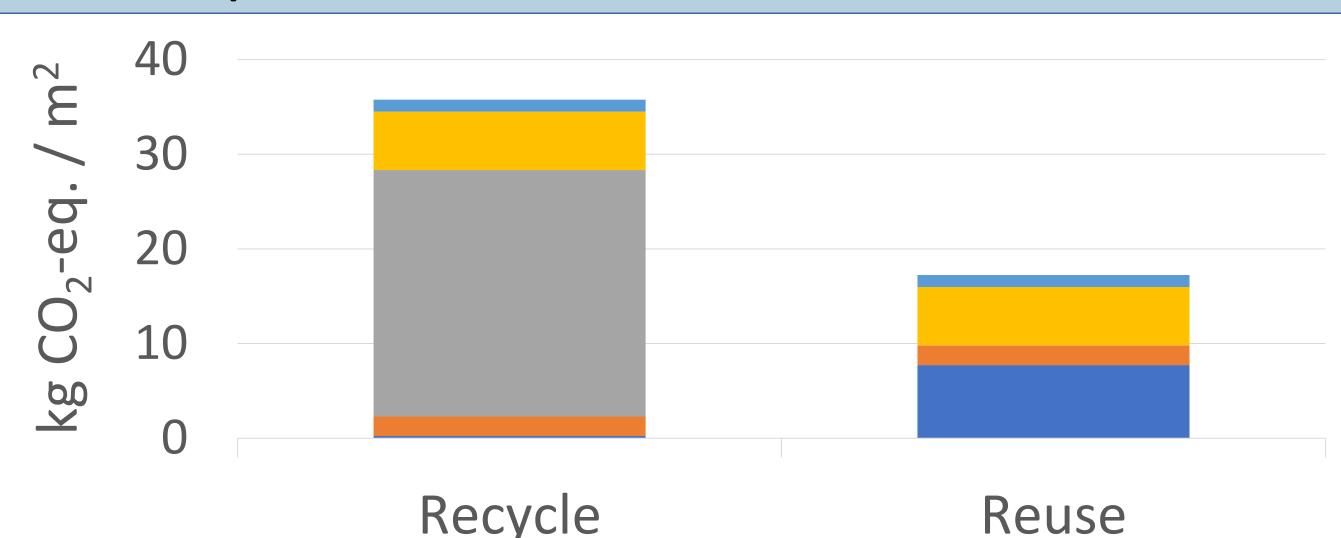

Comparison of a concrete floor made of recycled (from demolition waste) and reused material (reclaimed concrete slab from building)

Table 1. Correlation between CExD and ReCiPe impact categories; MKI weighted	
results of 11 categories	CExD
Global warming	
Human toxicity	
Freshwater eutrophication	
Marine Ecotoxicity	R>0.9
Land use	
Milieukostenindicator (MKI)	
Cumulative Energy demand	

Table 2. Comparison of cases	Recycle	Re-use
MKI (€)	4	2
GWP (kg CO ₂ eq.)	36	19
MCI (%)	68	83
CExD (MJ)	254	142
CED (MJ)	229	127

Results and discussion

- 1. Several indicators show the same relation of the case scenarios (Table 2).
- 2. The re-use case (shorter loop) had lower impact and CExD as well as a higher MCI, although the process of reclaiming materials had a higher impact (Figure 2).
- 3. Energetic resources weigh heavier in comparison to materials in the final score

Figure 2. Comparison of CO₂ eq. emissions of recycled and reused floor. Light blue: construction; yellow: transport to construction site; grey: recycling/refurbishing; orange: transport to processing; dark blue: demolition/disassembly

CExD indeed indicated lower impacts and preference for shorter loops

Conclusions

- Exergy is a useful resource use efficiency indicator for infra-structure systems.
- Material and energetic efficiency can be assessed jointly, presented separately and compared.

